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PREFACE 

In this Memorandum tha author employs the mathematical 

technique of dynamic programming  to obtain a best—fit 

approximation to a function that is defined over some 

given interval.    He  then describes how this method offers 

an approach to  the handling of a certain type of 

pattern—recognition problem and to  the approximation of 

optimal control policies. 
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SUMMARY 

The problem we start with appears to be quite 

specialized.  Given a function u(t) defined over the 

interval  [0,a],  we wish to find a polygonal approxi- 

mation which is a best fit in a mean—square sense.  The 

analytic problem for N is that of minimizing the 

function 

N~l .t.., 2 
iL. - S   L+i (u(t) - a. - b.t)Zdt 

ci 

over the quantities a., b.,  and t.. Here tg ■ 0, 

tN - a. 

This can be  treated in a number of direct fashions, 

using search and gradient  techniques.    We wish,  however, 

to employ dynamic programming,  which appears  to be 

superior even in this case,  and then gradually to 

enlarge the  scope of the problem until it covers a 

question in the  identification of systems and a version 

of the general problem of considering suboptimal policies 

in control processes. 
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DYNAMIC  PROGRAMMING,   SYSTEM IDENTIFICATION, 
AND SUBOPTIMIZATION 

1.     INTRODUCTION 

The problem we start with appears  to be quite 

specialized.     Given a function    u(t)    defined over the 

interval     [0,a],    we wish to find a polygonal approxi- 

mation which is a best fit in a mean—square sense.     (See 

Fig.   1.)    The analytic problem for    N    is  that of 

minimizing  the function 

(1.1) RN =    Z     f i+1   (u(t)  - a.  - b.t^dt 
N       is=0  J 11 

ti 

over the quantities    a.,  b.,     and    t..    Here    tQ ■ 0, 

tN - a. 

This can be treated in a number of direct fashions, 

using search and gradient techniques.    We wish,  however, 

to employ dynamic programming,  which appears  to be 

superior even in this case,   and then gradually to 

enlarge  the  scope of the problem until it covers  a 

question in the identification of systems  and a version 

of the general problem of considering suboptimal policies 

in control processes.     Results  related to what  follows 

have been presented in  [1,2,3]. 
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Fig.   1 
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2.     ADAPTIVE CURVE FITTING 

The foregoing problem can be considered to fall 

within the new area of sequential computation.     In place 

of choosing the    t.     in advance,  we allow the structure 

of  the function    u(t)     to determine  their positions. 

Similar techniques can be applied in connection with the 

numerical integration of ordinary and partial 

differential equations.    Write 

(2a) ,. mKn f  > " fN(a)' 

defined for N = C, 1,2,..., and a 2i ()•  Introduce the 

function of two variables, 

(2.2)    ACs^s«) «« min f 2 (u(t) - a - bt)2dt, 
a,b ^ 

sl 

for    0 < s-,  < s« < oo .     That this happens  in this case 

to be explicitly calculable is of no particular 

significance at the moment.     In general,   this function 

will be obtained via numerical methods. 

Then 

(2.3) f0(a)  - A(0,a); 

and the principle of optimality yields   the recurrence 

relation 
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(2.4) fN(a) -    ^n    lA(tN,a) + f^^^)], 
(Kt^a 

for    N > 1. 

This leads to a quite simple and efficient 

computational algorithm. 
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3.  DISCUSSION 

Perhaps the first point to note in connection with 

what has been given above is that the computational 

feasibility of the algorithm inherent in (2.4) is not 

strongly dependent upon the mean—square norm in (2.2). 

We could just as easily use 

(3.1)    A(s1 ,S«) « min  max  |u(t) — a — bt|, 1 l        a,b s^t^s« 

or allow approximation by polynomials of higher degree. 

This brings us  into contact with the  theory of spline 

approximations,  but we shall not pursue that here;   see 

[4]   for an extensive set of references. 

As soon as we start pursuing the idea of approxi- 

mating to    u(t)    over the interval     [s-^s«]    by a 

function of simple analytic form,  we enter the domain 

of differential approximation  [5],    We recognize that a 

polynomial of degree    M    satisfies  the differential 

equation 

^(M+l) 

M   X, t V that the exponential polynomial  E a, e    satisfies 
k-1 K 

the differential equation 

d(M)      d^^v (3.3)    ^ + bl<LCK_TV+... 4bMv = 0, 



M 
and that  S a, cos(X. + ^, ) satisfies a similar 

equation of degree 2M,  It follows that a substantial 

extension of straight—line approximation is the 

following. Determine the parameters a.  and initial 

conditions c.  so that 

(3.4)    I|u~v 

is minimized,  where    u    is given and    v    is determined 

by the ordinary differential equation 

n^   d(M)v.rtv   d^1)v a ^ dt^  ^,v,.e.,^(M_1),a1,...,aK;, 

v^1 (0) = c.,  i = 0,1,...,M - 1. Here, we can use a 

mean—square norm, or some other convenient norm. 

Problems of this nature can be attacked by means of 

quasilinearization and other techniques [5]. 
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4^ IDENTIFICATION OF SYSTEMS 

The foregoing remarks and techniques allow us to 

approach an interesting problem in the identification of 

systems.  Suppose that we know that a function u(t)  is 

generated in the following manner.  In the interval 

^ ^ t: ^ ^+1'   ^ < 4 ^ ••• 1 ^+1'   to"0'   tw-i * V 
it satisfies  the equation 

<4-1) TTRT " g(,t,v,...,     (M^1),ai> 
dt1^1" v dt 

v^^t.) = c.j,    j  « 0,1,...,M - 1, 

Given the values of u(t) in [0,a],  we wish to 

determine the vector parameters a.,  the parameters c.., 

and the switching points t.,  and occasionally  N 

itself. This is a particular type of pattern recognition 

problem. 

We begin by introducing the function 

,s( 
(4.2)    A(s1,s2) «= min J 2 (u - v)2dt, 

where     ^(t)     satisfies   (4.1),     0 <  s,   < s2 1 a»     ^ur 

assumption is  that we can compute  this  function of  two 

variables.     This  will     in general,   however,  be  a 

nontrivial  task.     If  then we  introduce  the  function 



(4.3) fN(a)  -        min      J    (u - v)2dt, 
{ai,cij]  0 

a > 0,    allowing    N    switch points,  or transition points, 

we obtain exactly  the same recurrence relation as  in 

(2.4).    If    u(t)     is actually determined by  (4.1),  we 

will have    fN(aQ)  ■■ 0    for the correct choice of    tN. 
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5.  SUBO PT IM IZ AT I ON 

For analytic, economic, and engineering convenience, 

it is often useful to consider the approximation of 

optimal control policies by simple, feasible control 

policies 

Thus, for example, in the minimization of 

T 
(5.1) J(u) - T gC^u^dt,  u(0) - c, 

0 

we may wish to consider as admissible functions only 

those  for which 

(5.2) u^t)   -= bi,     si < t < si+1. 

with s^ = 0, s.,., = T, where the b.  and s.  are to 0      N+l i       L 

be chosen. 

Let us define 

(5.3;    fN(T,c) = min J(u), 

where the minimum is now over the class of suboptimal 

policies defined above. Then, as before, the principle 

of optimality yields the relation 

(5.4)    fN(T,c) = min ^ i g(u(b0, t) ,b0)dt 
b0,sl 0 

+ f^Cr - S^U^Q^^) 
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for N > 1,  with 

T 
f0(T,c) = min j g(u(b0,t),b0)dt. 

b0 0 

Here u(bQ,t)  denotes the function over the relevant 

t—interval determined by the nature of the suboptinal 

policy and the initial state c.  In this case, 

u(b0,t) = c + b0t. 
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6. REDUCTION OF DIMENSIO"'lALITY 

One of the purposes of using suboptimal policies is 

to bypass some of the analytic and computational 

difficulties of the original optimization problem. This 

is particularly the case when we have a control process 

involving either a high-dimensional state vector, or an 

infinite-dimensional vector. 

In this situation, we can often replace the actual 

state vector at time t by a record of the control 

policies used, and thus obtain a more manageable 

computational algorithm. Furthermore, we can use new 

types of approximation methods. For a detailed 

discussion of this technique, see [6]. 
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